论文标题

深度学习的最佳量子退火时间表的随机模型

Deep learning optimal quantum annealing schedules for random Ising models

论文作者

Hegde, Pratibha Raghupati, Passarelli, Gianluca, Cantele, Giovanni, Lucignano, Procolo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A crucial step in the race towards quantum advantage is optimizing quantum annealing using ad-hoc annealing schedules. Motivated by recent progress in the field, we propose to employ long-short term memory (LSTM) neural networks to automate the search for optimal annealing schedules for random Ising models on regular graphs. By training our network using locally-adiabatic annealing paths, we are able to predict optimal annealing schedules for unseen instances and even larger graphs than those used for training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源