论文标题
巨噬细胞通过不断发展的曲线平滑轨迹
Macrophages trajectories smoothing by evolving curves
论文作者
论文摘要
分析细胞轨迹时,由于细胞的随机运动以及细胞中心检测中可能的不完美,我们通常必须处理嘈杂的数据。为了平滑这些轨迹,我们提出了一种基于Lagrangian公式中不断发展的开放平面曲线方法的数学模型和数值方法。该模型包含两个术语:第一个是局部曲率影响给出的平滑项,而另一个则将曲线吸引到原始轨迹。我们使用流动的有限体积方法来离散对流扩散部分微分方程。 PDE包括曲线网格点的渐近切向重新分布。我们提出了巨噬细胞轨迹平滑的结果,并定义了一种计算平滑曲线离散点的细胞速度的方法。
When analyzing cell trajectories, we often have to deal with noisy data due to the random motion of the cells and possible imperfections in cell center detection. To smooth these trajectories, we present a mathematical model and numerical method based on evolving open-plane curve approach in the Lagrangian formulation. The model contains two terms: the first is the smoothing term given by the influence of local curvature, while the other attracts the curve to the original trajectory. We use the flowing finite volume method to discretize the advection-diffusion partial differential equation. The PDE includes the asymptotically uniform tangential redistribution of curve grid points. We present results for macrophage trajectory smoothing and define a method to compute the cell velocity for the discrete points on the smoothed curve.