论文标题
部分可观测时空混沌系统的无模型预测
Hierarchical Proxy Modeling for Improved HPO in Time Series Forecasting
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Selecting the right set of hyperparameters is crucial in time series forecasting. The classical temporal cross-validation framework for hyperparameter optimization (HPO) often leads to poor test performance because of a possible mismatch between validation and test periods. To address this test-validation mismatch, we propose a novel technique, H-Pro to drive HPO via test proxies by exploiting data hierarchies often associated with time series datasets. Since higher-level aggregated time series often show less irregularity and better predictability as compared to the lowest-level time series which can be sparse and intermittent, we optimize the hyperparameters of the lowest-level base-forecaster by leveraging the proxy forecasts for the test period generated from the forecasters at higher levels. H-Pro can be applied on any off-the-shelf machine learning model to perform HPO. We validate the efficacy of our technique with extensive empirical evaluation on five publicly available hierarchical forecasting datasets. Our approach outperforms existing state-of-the-art methods in Tourism, Wiki, and Traffic datasets, and achieves competitive result in Tourism-L dataset, without any model-specific enhancements. Moreover, our method outperforms the winning method of the M5 forecast accuracy competition.