论文标题
部分可观测时空混沌系统的无模型预测
FAIR Principles for data and AI models in high energy physics research and education
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In recent years, digital object management practices to support findability, accessibility, interoperability, and reusability (FAIR) have begun to be adopted across a number of data-intensive scientific disciplines. These digital objects include datasets, AI models, software, notebooks, workflows, documentation, etc. With the collective dataset at the Large Hadron Collider scheduled to reach the zettabyte scale by the end of 2032, the experimental particle physics community is looking at unprecedented data management challenges. It is expected that these grand challenges may be addressed by creating end-to-end AI frameworks that combine FAIR and AI-ready datasets, advances in AI, modern computing environments, and scientific data infrastructure. In this work, the FAIR4HEP collaboration explores the interpretation of FAIR principles in the context of data and AI models for experimental high energy physics research. We investigate metrics to quantify the FAIRness of experimental datasets and AI models, and provide open source notebooks to guide new users on the use of FAIR principles in practice.