论文标题
部分可观测时空混沌系统的无模型预测
Label Alignment Regularization for Distribution Shift
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recent work has highlighted the label alignment property (LAP) in supervised learning, where the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix. Drawing inspiration from this observation, we propose a regularization method for unsupervised domain adaptation that encourages alignment between the predictions in the target domain and its top singular vectors. Unlike conventional domain adaptation approaches that focus on regularizing representations, we instead regularize the classifier to align with the unsupervised target data, guided by the LAP in both the source and target domains. Theoretical analysis demonstrates that, under certain assumptions, our solution resides within the span of the top right singular vectors of the target domain data and aligns with the optimal solution. By removing the reliance on the commonly used optimal joint risk assumption found in classic domain adaptation theory, we showcase the effectiveness of our method on addressing problems where traditional domain adaptation methods often fall short due to high joint error. Additionally, we report improved performance over domain adaptation baselines in well-known tasks such as MNIST-USPS domain adaptation and cross-lingual sentiment analysis.