论文标题
部分可观测时空混沌系统的无模型预测
A Connection Between the Monogenicity of Certain Power-Compositional Trinomials and $k$-Wall-Sun-Sun Primes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We say that a monic polynomial $f(x)\in {\mathbb Z}[x]$ of degree $N$ is monogenic if $f(x)$ is irreducible over ${\mathbb Q}$ and \[\{1,θ,θ^2,\ldots, θ^{N-1}\}\] is a basis for the ring of integers of ${\mathbb Q}(θ)$, where $f(θ)=0$. Let $k$ be a positive integer, and let $U_n:=U_n(k,-1)$ be the Lucas sequence $\{U_n\}_{n\ge 0}$ of the first kind defined by \[U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=kU_{n-1}+U_{n-2} \quad \mbox{ for $n\ge 2$}.\] A $k$-Wall-Sun-Sun prime is a prime $p$ such that \[U_{π_k(p)}\equiv 0 \pmod{p^2},\] where $π_k(p)$ is the length of the period of $\{U_n\}_{n\ge 0}$ modulo $p$. Let ${\mathcal D}=k^2+4$ if $k\equiv 1 \pmod{2}$, and ${\mathcal D}=(k/2)^2+1$ if $k\equiv 0 \pmod{2}$. Suppose that $k\not \equiv 0 \pmod{4}$ and ${\mathcal D}$ is squarefree, and let $h$ denote the class number of ${\mathbb Q}(\sqrt{\mathcal D})$. Let $s\ge 1$ be an integer such that, for every odd prime divisor $p$ of $s$, ${\mathcal D}$ is not a square modulo $p$ and $\gcd(p,h{\mathcal D})=1$. In this article, we prove that $x^{2s^n}-kx^{s^n}-1$ is monogenic for all integers $n\ge 1$ if and only if no prime divisor of $s$ is a $k$-Wall-Sun-Sun prime.