论文标题

部分可观测时空混沌系统的无模型预测

Efficient Demand Response Location Targeting for Price Spike Mitigation by Exploiting Price-demand Relationship

论文作者

Zhang, Yufan, Wen, Honglin, Feng, Tao, Chen, Yize

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Demand response (DR) leverages demand-side flexibility, offering a promising approach to enhance market conditions like mitigating wholesale price spikes. However, poorly chosen DR locations can inadvertently increase electricity prices. For that, we introduce a method to rigorously select DR locations and corresponding demand reductions. We formulate a bilevel program where the upper level determines the DR locations and demand reductions while ensuring the average nodal prices meet a predetermined target. The lower level tackles an economic dispatch (ED) problem and feeds the resulting nodal prices back to the upper level based on post-DR demands. This bilevel formulation presents challenges due to the lower-level non-convexity affecting the upper-level constraints on average nodal prices. To address this, we propose to replace the lower level with a piecewise linear function representing the price-demand relationship, solving iteratively for each linear segment. This results in a tractable mixed-integer linear program. An acceleration strategy is proposed to further reduce the computation time. Numerical studies demonstrate the ability of the proposed approach to reduce prices to a desired level. Besides, we empirically show that the proposed approach is robust against inaccurate system parameters and can reduce computation time by over 50%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源