论文标题
部分可观测时空混沌系统的无模型预测
Bi-intermediate logics of trees and co-trees
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A bi-Heyting algebra validates the Gödel-Dummett axiom $(p\to q)\vee (q\to p)$ iff the poset of its prime filters is a disjoint union of co-trees (i.e., order duals of trees). Bi-Heyting algebras of this kind are called bi-Gödel algebras and form a variety that algebraizes the extension $\mathsf{bi}$-$\mathsf{LC}$ of bi-intuitionistic logic axiomatized by the Gödel-Dummett axiom. In this paper we initiate the study of the lattice $Λ(\mathsf{bi}$-$\mathsf{LC})$ of extensions of $\mathsf{bi}$-$\mathsf{LC}$. We develop the methods of Jankov-style formulas for bi-Gödel algebras and use them to prove that there are exactly continuum many extensions of $\mathsf{bi}$-$\mathsf{LC}$. We also show that all these extensions can be uniformly axiomatized by canonical formulas. Our main result is a characterization of the locally tabular extensions of $\mathsf{bi}$-$\mathsf{LC}$. We introduce a sequence of co-trees, called the finite combs, and show that a logic in $\mathsf{bi}$-$\mathsf{LC}$ is locally tabular iff it contains at least one of the Jankov formulas associated with the finite combs. It follows that there exists the greatest non-locally tabular extension of $\mathsf{bi}$-$\mathsf{LC}$ and consequently, a unique pre-locally tabular extension of $\mathsf{bi}$-$\mathsf{LC}$. These results contrast with the case of the intermediate logic axiomatized by the Gödel-Dummett axiom, which is known to have only countably many extensions, all of which are locally tabular.