论文标题

部分可观测时空混沌系统的无模型预测

Fingerprint Pore Detection: A Survey

论文作者

Ibragimov, Azim, Segundo, Mauricio Pamplona

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This work presents the first survey on fingerprint pore detection. The survey provides a general overview of the field and discusses methods, datasets, and evaluation protocols. We also present a baseline method inspired on the state-of-the-art that implements a customizable Fully Convolutional Network, whose hyperparameters were tuned to achieve optimal pore detection rates. Finally, we also reimplementated three other approaches proposed in the literature for evaluation purposes. We have made the source code of (1) the baseline method, (2) the reimplemented approaches, and (3) the training and evaluation processes for two different datasets available to the public to attract more researchers to the field and to facilitate future comparisons under the same conditions. The code is available in the following repository: https://github.com/azimIbragimov/Fingerprint-Pore-Detection-A-Survey

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源