论文标题
深度神经进化,用于有限的异构数据:使用小型虚拟合并图像收集到神经母细胞瘤脑转移的概念证明
Deep neuroevolution for limited, heterogeneous data: proof-of-concept application to Neuroblastoma brain metastasis using a small virtual pooled image collection
论文作者
论文摘要
近年来,放射学的人工智能(AI)取得了长足的进步,但仍然存在许多障碍。过度拟合和缺乏普遍性代表着重要的持续挑战,阻碍了准确且可靠的临床部署。如果AI算法可以避免过度拟合并实现真正的普遍性,则它们可以从研究领域转变为临床工作的最前沿。最近,小型数据AI方法(例如深神经进化(DNE))避免了过度适合小型训练集。我们试图通过将DNE应用于由来自各个机构的图像组成的几乎汇总数据集来解决过度拟合和概括性。我们的用例是对MRI上的神经母细胞瘤脑转移进行分类。神经母细胞瘤非常适合我们的目标,因为它是一种罕见的癌症。因此,研究这种小儿疾病需要一种小的数据方法。作为三级护理中心,我们本地图片归档和通信系统(PAC)中的神经母细胞瘤图像主要来自外部机构。这些多机构图像提供了一个可以模拟现实世界临床部署的异质数据集。与先前的工作一样,我们使用了一个小型训练集,其中包括30个正常和30个富含转移的后对比后MRI脑扫描,外部图像为37%。测试集充满了83%的外部图像。 DNE融合到97%的测试集精度。因此,该算法能够在模拟现实世界数据的测试集上以几乎完美的精度预测图像类。因此,此处描述的工作代表了对临床可行性AI的相当大贡献。
Artificial intelligence (AI) in radiology has made great strides in recent years, but many hurdles remain. Overfitting and lack of generalizability represent important ongoing challenges hindering accurate and dependable clinical deployment. If AI algorithms can avoid overfitting and achieve true generalizability, they can go from the research realm to the forefront of clinical work. Recently, small data AI approaches such as deep neuroevolution (DNE) have avoided overfitting small training sets. We seek to address both overfitting and generalizability by applying DNE to a virtually pooled data set consisting of images from various institutions. Our use case is classifying neuroblastoma brain metastases on MRI. Neuroblastoma is well-suited for our goals because it is a rare cancer. Hence, studying this pediatric disease requires a small data approach. As a tertiary care center, the neuroblastoma images in our local Picture Archiving and Communication System (PACS) are largely from outside institutions. These multi-institutional images provide a heterogeneous data set that can simulate real world clinical deployment. As in prior DNE work, we used a small training set, consisting of 30 normal and 30 metastasis-containing post-contrast MRI brain scans, with 37% outside images. The testing set was enriched with 83% outside images. DNE converged to a testing set accuracy of 97%. Hence, the algorithm was able to predict image class with near-perfect accuracy on a testing set that simulates real-world data. Hence, the work described here represents a considerable contribution toward clinically feasible AI.