论文标题

CDDFUSE:相关驱动的双分支特征分解多模式图像融合

CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion

论文作者

Zhao, Zixiang, Bai, Haowen, Zhang, Jiangshe, Zhang, Yulun, Xu, Shuang, Lin, Zudi, Timofte, Radu, Van Gool, Luc

论文摘要

多模式(MM)图像融合旨在渲染融合的图像,以保持不同方式的优点,例如功能突出显示和详细纹理。为了应对建模交叉模式特征和分解理想的模态特异性和模态共享特征的挑战,我们提出了一种新颖的相关功能驱动的特征分解融合(CDDFUSE)网络。首先,CDDFUSE使用Restormer块来提取交叉模式浅特征。然后,我们引入了带有Lite Transformer(LT)的双支流变压器-CNN特征提取器(LT)阻止了远程注意力,以处理低频全局特征和可逆神经网络(INN)块,专注于提取高频本地信息。进一步提出了相关驱动的损失,以使低频特征相关,而基于嵌入式信息的高频特征不相关。然后,基于LT的全球融合和基于Inn的本地融合层输出融合图像。广泛的实验表明,我们的CDDFUSE在多个融合任务中实现了有希望的结果,包括红外可见的图像融合和医学图像融合。我们还表明,CDDFUSE可以在统一基准中提高下游红外可见语义分割和对象检测的性能。该代码可在https://github.com/zhaozixiang1228/mmif-cddfuse上找到。

Multi-modality (MM) image fusion aims to render fused images that maintain the merits of different modalities, e.g., functional highlight and detailed textures. To tackle the challenge in modeling cross-modality features and decomposing desirable modality-specific and modality-shared features, we propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network. Firstly, CDDFuse uses Restormer blocks to extract cross-modality shallow features. We then introduce a dual-branch Transformer-CNN feature extractor with Lite Transformer (LT) blocks leveraging long-range attention to handle low-frequency global features and Invertible Neural Networks (INN) blocks focusing on extracting high-frequency local information. A correlation-driven loss is further proposed to make the low-frequency features correlated while the high-frequency features uncorrelated based on the embedded information. Then, the LT-based global fusion and INN-based local fusion layers output the fused image. Extensive experiments demonstrate that our CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. We also show that CDDFuse can boost the performance in downstream infrared-visible semantic segmentation and object detection in a unified benchmark. The code is available at https://github.com/Zhaozixiang1228/MMIF-CDDFuse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源