论文标题

不要看我:时空特洛伊木马攻击对深度增强的学习仪式自动驾驶

Don't Watch Me: A Spatio-Temporal Trojan Attack on Deep-Reinforcement-Learning-Augment Autonomous Driving

论文作者

Yu, Yinbo, Liu, Jiajia

论文摘要

深钢筋学习(DRL)是实现自动驾驶(AD)系统的最流行算法之一。 DRL的关键成功因素是它具有深层神经网络的感知能力,然而,这被证明容易受到特洛伊木马攻击的影响。特洛伊木马攻击已在监督学习(SL)任务(例如图像分类)中广泛探索,但很少在DRL解决的顺序决策任务中。因此,在本文中,我们探讨了特洛伊木马对DRL的攻击,以实现广告任务。首先,我们提出了一种基于复发性神经网络和注意机制的时空DRL算法,以证明捕获时空交通特征是DRL-EAGMENT AD系统有效性和安全性的关键因素。然后,我们设计了对DRL策略的空间式特洛伊木马攻击,其中触发器以一系列空间和时间流量特征隐藏,而不是在SL和DRL任务上使用的Trojan中使用的单个即时状态。借助我们的木马,对手可以用作周围的正常车辆,可以通过特定的时空驾驶行为触发攻击,而不是物理或无线访问。通过广泛的实验,我们表明,尽管捕获时空的交通特征可以改善DRL在不同的广告任务上的性能,但它们会遭受特洛伊木马的攻击,因为我们设计的特洛伊木马表现出较高的隐形(各种时空触发模式),有效,有效(小于%\%的性能变异率,比98.5%\%\%\%\%\%\%\%\%\%\%),并且可持续的攻击率更高),并且可持续攻击率。

Deep reinforcement learning (DRL) is one of the most popular algorithms to realize an autonomous driving (AD) system. The key success factor of DRL is that it embraces the perception capability of deep neural networks which, however, have been proven vulnerable to Trojan attacks. Trojan attacks have been widely explored in supervised learning (SL) tasks (e.g., image classification), but rarely in sequential decision-making tasks solved by DRL. Hence, in this paper, we explore Trojan attacks on DRL for AD tasks. First, we propose a spatio-temporal DRL algorithm based on the recurrent neural network and attention mechanism to prove that capturing spatio-temporal traffic features is the key factor to the effectiveness and safety of a DRL-augment AD system. We then design a spatial-temporal Trojan attack on DRL policies, where the trigger is hidden in a sequence of spatial and temporal traffic features, rather than a single instant state used in existing Trojan on SL and DRL tasks. With our Trojan, the adversary acts as a surrounding normal vehicle and can trigger attacks via specific spatial-temporal driving behaviors, rather than physical or wireless access. Through extensive experiments, we show that while capturing spatio-temporal traffic features can improve the performance of DRL for different AD tasks, they suffer from Trojan attacks since our designed Trojan shows high stealthy (various spatio-temporal trigger patterns), effective (less than 3.1\% performance variance rate and more than 98.5\% attack success rate), and sustainable to existing advanced defenses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源