论文标题

批次在功能上可数的对角线的补充是什么时候?

When is the complement of the diagonal of a LOTS functionally countable?

论文作者

Gutiérrez-Domínguez, Luis Enrique, Hernández-Gutiérrez, Rodrigo

论文摘要

在2021年的论文中,Vladimir Tkachuk询问是否有一个不可分割的批次$ x $,以至于$ x^2 \ setMinus \ {\ langle x,x \ rangle \ rangle \ colon x \ in x \} $是功能上可计数的。在本文中,我们证明,如果存在这样的空间,则必须是Aronszajn线,并承认$ \ leq 2 $ -to- $ 1 $ 1 $ 1 $ 1 $回收到Suslin Line的子空间。在此之后,假设存在SUSLIN线,我们证明存在功能上可计数的SUSLIN线。最后,我们提供了一个在功能上可计数的suslin行$ l $的示例,以便$ l^2 \ setMinus \ {\ langle x,x \ rangle \ colon x \ in L \} $在功能上不可数。

In a 2021 paper, Vladimir Tkachuk asked whether there is a non-separable LOTS $X$ such that $X^2\setminus\{\langle x,x\rangle\colon x\in X\}$ is functionally countable. In this paper we prove that such a space, if it exists, must be an Aronszajn line and admits a $\leq 2$-to-$1$ retraction to a subspace that is a Suslin line. After this, assuming the existence of a Suslin line, we prove that there is Suslin line that is functionally countable. Finally, we present an example of a functionally countable Suslin line $L$ such that $L^2\setminus\{\langle x,x\rangle\colon x\in L\}$ is not functionally countable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源