论文标题

GPT-3驱动的教学剂,用于培训儿童好奇的问答技能

GPT-3-driven pedagogical agents for training children's curious question-asking skills

论文作者

Abdelghani, Rania, Wang, Yen-Hsiang, Yuan, Xingdi, Wang, Tong, Lucas, Pauline, Sauzéon, Hélène, Oudeyer, Pierre-Yves

论文摘要

为了培训孩子提出好奇心驱动问题的能力,先前的研究探索了设计特定的练习,依靠提供语义和语言提示来帮助提出此类问题。但是,尽管表现出教学效率,但此方法仍然受到限制,因为它依赖于手工生成上述线索,这可能是一个非常昂贵的过程。在这种情况下,我们建议利用自然语言处理领域(NLP)的进步,并调查使用大型语言模型(LLM)自动生产奇怪的问答(QA)培训的教学内容的效率。我们使用“基于及时的”方法研究了上述内容,该方法包括在自然文本中向LLM解释任务。我们使用人类专家注释和与手工生成的内容进行比较来评估输出。结果确实表明了该内容的相关性和实用性。我们还在小学(9-10岁的75名儿童)进行了野外研究,在接受这项培训时,我们评估了儿童的质量检查表现。我们比较3种内容:1)提出“封闭”提示的手工生成的内容,导致预定义的问题; 2)提出相同类型的提示的GPT-3生成的内容; 3)提出“开放”提示的GPT-3生成内容,导致了几个可能的问题。我们看到两个“封闭”培训(显示使用GPT-3的可扩展性)和对接受“开放”培训的参与者的更好的质量检查性能(显示了方法的可扩展性)。这些结果表明,使用LLMS支持儿童产生更好奇的问题的效率,使用自然语言提示方法,该方法提供了教师和其他用户而不是AI技术专家的可用性。此外,结果还表明,开放式内容可能更适合培训好奇的问答技能。

In order to train children's ability to ask curiosity-driven questions, previous research has explored designing specific exercises relying on providing semantic and linguistic cues to help formulate such questions. But despite showing pedagogical efficiency, this method is still limited as it relies on generating the said cues by hand, which can be a very costly process. In this context, we propose to leverage advances in the natural language processing field (NLP) and investigate the efficiency of using a large language model (LLM) for automating the production of the pedagogical content of a curious question-asking (QA) training. We study generating the said content using the "prompt-based" method that consists of explaining the task to the LLM in natural text. We evaluate the output using human experts annotations and comparisons with hand-generated content. Results suggested indeed the relevance and usefulness of this content. We also conduct a field study in primary school (75 children aged 9-10), where we evaluate children's QA performance when having this training. We compare 3 types of content : 1) hand-generated content that proposes "closed" cues leading to predefined questions; 2) GPT-3-generated content that proposes the same type of cues; 3) GPT-3-generated content that proposes "open" cues leading to several possible questions. We see a similar QA performance between the two "closed" trainings (showing the scalability of the approach using GPT-3), and a better one for participants with the "open" training. These results suggest the efficiency of using LLMs to support children in generating more curious questions, using a natural language prompting approach that affords usability by teachers and other users not specialists of AI techniques. Furthermore, results also show that open-ended content may be more suitable for training curious question-asking skills.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源