论文标题
禁止子图II:边缘细分和“ H” - 图的复杂性框架
Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-graphs
论文作者
论文摘要
对于固定集$ {\ cal h} $,图$ g $是$ {\ cal h} $ - 如果$ g $不包含{\ cal h} $中的任何$ h \ subgraph-free,则为(不一定是诱导的)子。最近提出的框架对$ {\ cal H} $ - 无子图形图(对于有限的集合$ {\ cal h} $)进行了完整的分类,以解决在多项式时间内可在多项式时间内解决的问题,这些图表上有界widewidth,NP-Complete,NP-Complete in Subibibic图上的NP-Hardness and Np-Hardness Perdeed suberversed subdivisivision。尽管许多问题满足了这些条件,但也有许多不满足所有三个条件的问题,并且在$ {\ cal H} $中的复杂性 - 无子图形的图是未知的。我们研究框架的前两个条件所持的问题(在多项式时间内可以解决界面宽度和np-Complete在亚基图上的求解,但在边缘细分下不保留NP-固定度)。特别是,我们介绍了四个这样的问题的复杂性的分类:汉密尔顿周期,$ k $引起的脱节路径,$ C_5 $ - 颜色和恒星$ 3 $ - 颜色。尽管我们没有完成分类,但我们表明,多项式时间和NP完全完成之间的界限在我们的问题之间以及能够满足框架所有三个条件的问题之间有所不同,特别是当我们禁止``h h''' - 图(图形图形````h H'''''的所有三个条件了。因此,我们在$ {\ cal H} $ - 无子图形类别的问题之间表现出丰富的复杂性格局。
For a fixed set ${\cal H}$ of graphs, a graph $G$ is ${\cal H}$-subgraph-free if $G$ does not contain any $H \in {\cal H}$ as a (not necessarily induced) subgraph. A recently proposed framework gives a complete classification on ${\cal H}$-subgraph-free graphs (for finite sets ${\cal H}$) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity in ${\cal H}$-subgraph-free graphs is unknown. We study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: Hamilton Cycle, $k$-Induced Disjoint Paths, $C_5$-Colouring and Star $3$-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and also from problems that do satisfy all three conditions of the framework, in particular when we forbid certain subdivisions of the ``H''-graph (the graph that looks like the letter ``H''). Hence, we exhibit a rich complexity landscape among problems for ${\cal H}$-subgraph-free graph classes.