论文标题

RDS的扩展和吸引力:解决方案对单数SDE的长期行为

Expansion and attraction of RDS: long time behavior of the solution to singular SDE

论文作者

Ling, Chengcheng, Scheutzow, Michael

论文摘要

我们提供了一个框架,用于研究欧几里得空间中流量下有界集合的图像的膨胀速率,并将其应用于具有单数系数的随机微分方程(简称SDE)。如果可以将SDE的单数漂移分为两个术语,一个术语是单数,另一个项的径向分量在原点方向上具有足够强度的径向成分,则SDE生成的随机动力学系统承认了一个回落的吸引子。

We provide a framework for studying the expansion rate of the image of a bounded set under a flow in Euclidean space and apply it to stochastic differential equations (SDEs for short) with singular coefficients. If the singular drift of the SDE can be split into two terms, one of which is singular and the radial component of the other term has a radial component of sufficient strength in the direction of the origin, then the random dynamical system generated by the SDE admits a pullback attractor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源