论文标题
收集和评估长期4D农业动物数据集
Collection and Evaluation of a Long-Term 4D Agri-Robotic Dataset
论文作者
论文摘要
长期自治是对机器人的需求最高的功能之一。长时间的时间范围一遍又一遍地执行相同的任务,提供高标准的可重复性和鲁棒性的可能性很有吸引力。长期自主权可以在用于精确农业的机器人系统中发挥至关重要的作用,例如,协助人类在大果园中监测和收集农作物。考虑到这个范围,我们报告了在葡萄园中长期部署自动移动机器人在整个葡萄园中的长期部署,以供数据收集。主要目的是从不同时间点从同一区域收集数据,以便能够分析映射和本地化任务中环境变化的影响。在这项工作中,我们提出了一项基于地图的本地化研究,进行了4个数据会话。当预先构建的MAP在视觉上与环境的当前外观不同时,我们会确定预期的故障,并且我们预计LTS-NET是一种指向提取稳定的时间特征以改善长期4D定位结果的解决方案。
Long-term autonomy is one of the most demanded capabilities looked into a robot. The possibility to perform the same task over and over on a long temporal horizon, offering a high standard of reproducibility and robustness, is appealing. Long-term autonomy can play a crucial role in the adoption of robotics systems for precision agriculture, for example in assisting humans in monitoring and harvesting crops in a large orchard. With this scope in mind, we report an ongoing effort in the long-term deployment of an autonomous mobile robot in a vineyard for data collection across multiple months. The main aim is to collect data from the same area at different points in time so to be able to analyse the impact of the environmental changes in the mapping and localisation tasks. In this work, we present a map-based localisation study taking 4 data sessions. We identify expected failures when the pre-built map visually differs from the environment's current appearance and we anticipate LTS-Net, a solution pointed at extracting stable temporal features for improving long-term 4D localisation results.