论文标题

用带有指导性的想象扩展小规模数据集

Expanding Small-Scale Datasets with Guided Imagination

论文作者

Zhang, Yifan, Zhou, Daquan, Hooi, Bryan, Wang, Kai, Feng, Jiashi

论文摘要

DNN的力量在很大程度上取决于培训数据的数量和质量。但是,大规模收集和注释数据通常很昂贵且耗时。为了解决此问题,我们探索了一项称为数据集扩展的新任务,旨在通过自动创建新标记的样本来扩展现成的小数据集。为此,我们提出了一个指导的想象框架(GIF),该框架利用了诸如DALL-E2和稳定扩散(SD)之类的先进生成模型来“想象”并从输入种子数据中创建信息丰富的新数据。具体而言,GIF通过优化先前模型的语义有意义的空间中种子数据的潜在特征来进行数据想象,从而创建具有新内容的照片真实图像。为了指导想象力为创建用于模型培训的信息样本,我们介绍了两个关键标准,即,阶级维护信息的促进和样本多样性促进。这些标准已被证实对于有效的数据集扩展至关重要:GIF-SD在自然图像数据集上获得的模型精度比使用SD的非指导扩展高13.5%。有了这些基本标准,GIF在各种情况下成功扩展了小数据集,在六个自然图像数据集中平均将模型准确性提高了36.9%,在三个医疗数据集中平均将模型的准确性提高了13.5%。源代码可从https://github.com/vanint/datasetexpansion获得。

The power of DNNs relies heavily on the quantity and quality of training data. However, collecting and annotating data on a large scale is often expensive and time-consuming. To address this issue, we explore a new task, termed dataset expansion, aimed at expanding a ready-to-use small dataset by automatically creating new labeled samples. To this end, we present a Guided Imagination Framework (GIF) that leverages cutting-edge generative models like DALL-E2 and Stable Diffusion (SD) to "imagine" and create informative new data from the input seed data. Specifically, GIF conducts data imagination by optimizing the latent features of the seed data in the semantically meaningful space of the prior model, resulting in the creation of photo-realistic images with new content. To guide the imagination towards creating informative samples for model training, we introduce two key criteria, i.e., class-maintained information boosting and sample diversity promotion. These criteria are verified to be essential for effective dataset expansion: GIF-SD obtains 13.5% higher model accuracy on natural image datasets than unguided expansion with SD. With these essential criteria, GIF successfully expands small datasets in various scenarios, boosting model accuracy by 36.9% on average over six natural image datasets and by 13.5% on average over three medical datasets. The source code is available at https://github.com/Vanint/DatasetExpansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源