论文标题
部分可观测时空混沌系统的无模型预测
DMIS: Dynamic Mesh-based Importance Sampling for Training Physics-Informed Neural Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Modeling dynamics in the form of partial differential equations (PDEs) is an effectual way to understand real-world physics processes. For complex physics systems, analytical solutions are not available and numerical solutions are widely-used. However, traditional numerical algorithms are computationally expensive and challenging in handling multiphysics systems. Recently, using neural networks to solve PDEs has made significant progress, called physics-informed neural networks (PINNs). PINNs encode physical laws into neural networks and learn the continuous solutions of PDEs. For the training of PINNs, existing methods suffer from the problems of inefficiency and unstable convergence, since the PDE residuals require calculating automatic differentiation. In this paper, we propose Dynamic Mesh-based Importance Sampling (DMIS) to tackle these problems. DMIS is a novel sampling scheme based on importance sampling, which constructs a dynamic triangular mesh to estimate sample weights efficiently. DMIS has broad applicability and can be easily integrated into existing methods. The evaluation of DMIS on three widely-used benchmarks shows that DMIS improves the convergence speed and accuracy in the meantime. Especially in solving the highly nonlinear Schrödinger Equation, compared with state-of-the-art methods, DMIS shows up to 46% smaller root mean square error and five times faster convergence speed. Code are available at https://github.com/MatrixBrain/DMIS.