论文标题

优化一维拓扑超导体中Majorana零模式的运输

Optimizing the transport of Majorana zero modes in one-dimensional topological superconductors

论文作者

Truong, Bill P., Agarwal, Kartiek, Pereg-Barnea, T.

论文摘要

拓扑量子计算基于编织非阿布莱安人的概念,例如Majorana零模式(MZMS),以执行栅极操作。这些协议的关键构建基础是通过拓扑超导体绝热地穿梭。在这里,我们考虑了“钢琴钥匙”方法,其中MZM是使用局部电动门传输的,以调整拓扑上琐碎和非平凡相之间的电线的截面(“键”)。我们在数值上模拟了单线传输,并计算与激发系统相对应的绝热误差。我们发现,通过使用多个键来促进运输时,通常会减少此错误,因为人们可以将每个钢琴钥匙按下作为有效的Landau-Zener过程进行建模可能会减少。但是,进一步增加键的数量会增加错误。因此,存在非平凡的最佳键,这些键数将固定的总班车时间最小化。如我们所示,可以通过将每个钥匙按住的钥匙来解释为有效的Landau-Zener过程,同时要仔细注意由于在每个密钥按下的开始和结束时对化学电位的时间依赖性调制而引起的幂律校正的仔细注意。

Topological quantum computing is based on the notion of braiding non-Abelian anyons, such as Majorana zero modes (MZMs), to perform gate operations. A crucial building block of these protocols is the adiabatic shuttling of MZMs through topological superconductors. Here, we consider the "piano key" approach, where MZMs are transported using local electric gates to tune sections ("keys") of a wire between topologically trivial and nontrivial phases. We numerically simulate this transport on a single wire and calculate the diabatic error corresponding to exciting the system. We find that this error is typically reduced when transport is facilitated by using multiple keys as one may expect from modeling each piano key press as an effective Landau-Zener process. However, further increasing the number of keys increases errors; thus, there exists a nontrivial optimal number of keys that minimizes the diabatic error given a fixed total shuttle time. As we show, this optimal number of keys can be explained by modeling each key press as an effective Landau-Zener process while paying careful attention to power-law corrections that arise due to the nonanalytic behavior of the time-dependent modulation of the chemical potential at the beginning and end of each key press.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源