论文标题

零和随机Stackelberg游戏

Zero-Sum Stochastic Stackelberg Games

论文作者

Goktas, Denizalp, Zhao, Jiayi, Greenwald, Amy

论文摘要

零和随机游戏在从机器学习到经济学的各个领域中发现了重要的应用。该模型的工作主要集中在NASH平衡的计算上,因为它在解决对抗板和视频游戏方面的有效性。不幸的是,当每个州的回报不是球员的行为中的凸起时,就不能保证在零和随机游戏中存在NASH平衡。但是,确保存在阶梯平衡。因此,在本文中,我们研究了零和随机的Stackelberg游戏。超出了(非平稳)stackelberg equilibria的已知存在结果,我们证明了这些游戏中递归(即马尔可夫完美)stackelberg equilibria(Recse)的存在,为策略概况提供了必要的条件,可以使其作为收回,并可以通过(虚弱)通过(虚弱)通过值进行计算。最后,我们表明,零和随机stackelberg游戏可以对代理商和时间分配商品的价格进行建模。更具体地说,我们提出了一个零和随机的Stackelberg游戏,其RECSE对应于大量随机Fisher市场的递归竞争平衡。我们通过一系列实验结束,展示了如何使用我们的方法来解决随机费舍尔市场中的消费问题。

Zero-sum stochastic games have found important applications in a variety of fields, from machine learning to economics. Work on this model has primarily focused on the computation of Nash equilibrium due to its effectiveness in solving adversarial board and video games. Unfortunately, a Nash equilibrium is not guaranteed to exist in zero-sum stochastic games when the payoffs at each state are not convex-concave in the players' actions. A Stackelberg equilibrium, however, is guaranteed to exist. Consequently, in this paper, we study zero-sum stochastic Stackelberg games. Going beyond known existence results for (non-stationary) Stackelberg equilibria, we prove the existence of recursive (i.e., Markov perfect) Stackelberg equilibria (recSE) in these games, provide necessary and sufficient conditions for a policy profile to be a recSE, and show that recSE can be computed in (weakly) polynomial time via value iteration. Finally, we show that zero-sum stochastic Stackelberg games can model the problem of pricing and allocating goods across agents and time. More specifically, we propose a zero-sum stochastic Stackelberg game whose recSE correspond to the recursive competitive equilibria of a large class of stochastic Fisher markets. We close with a series of experiments that showcase how our methodology can be used to solve the consumption-savings problem in stochastic Fisher markets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源