论文标题
派生的引号方案
Derived quot schemes
论文作者
论文摘要
我们定义了与非词形准主观品种上相干捆关系相关的经典引号函数的派生增强。我们证明了它的代表性,并表明它具有预期的切线复合物。派生的引号方案可以由作为交换分级差异代数(CDGA)获得的仿射图涵盖,我们计算一个示例。为了证明本演讲的有用性,我们在此示例上写下了一个明确的移动形式,并猜想它与Pantev-Toemn-Vaquié-vezzosi构建的完美复合物的衍生堆栈中移动的符号结构一致(Arxiv:arxiv:1111.3209)和Brav-Dyckerhoff(Arxiv:ardyckerhhoff(arxiv:ardyckerhoff:ardyckerhhoff:ar xiv:ar x11111111111)。
We define a derived enhancement of the classical quot functor of quotients associated to a coherent sheaf on a nonsingular quasiprojective variety. We prove its representability and show that it has the expected tangent complex. The derived quot scheme of points can be covered by affine charts obtained as spectra of commutative graded differential algebras (cdgas) and we compute an example. As a demonstration of the usefulness of this presentation, we write down an explicit shifted form on this example and conjecture that it agrees with the shifted symplectic structure on the derived stack of perfect complexes constructed by Pantev-Toën-Vaquié-Vezzosi (arXiv:1111.3209) and Brav-Dyckerhoff (arXiv:1812.11913).