论文标题
二维扩散胶体胶体带:优化溶质水槽和来源的空间和时间设计
Two-dimensional diffusiophoretic colloidal banding: Optimizing the spatial and temporal design of solute sinks and sources
论文作者
论文摘要
在这项工作中,我们从数值上研究了二维溶质梯度对胶体颗粒的分布,即胶体带的分布,即通过扩散性粘液性诱导。溶质梯度是由空间排列的来源和水槽产生的,这些源和水槽发射/吸收了时间相关的溶质通量。首先,我们研究一个偶极系统,即一个源和一个水槽,发现dipole扩散和通量衰减的时间尺度决定了胶体条带。在时间尺度比间dipledipole扩散时间尺度的时间尺度短,我们观察到由于水槽的排斥而导致的粒子富集迅速增强。但是,在时间尺度上,源比间扩散时间尺度的时间更长,源和水槽屏幕相互屏幕,导致增强速度较慢。如果溶质通量在间diple扩散的时间范围内衰减,则获得最佳的分离距离,以使颗粒富集最大化。我们发现,源内部溶质和大量之间的分区系数强烈影响最佳的分离距离。出乎意料的是,源和整体中溶质之间的扩散比对最佳偶极子分离距离的影响要弱得多。我们还检查了一个八杆构型,即四个水槽和四个来源,以一个圆圈排列,并证明最大化富集的几何排列取决于圆的半径。如果圆的半径很小,则优先使用以交替方式排列的来源和水槽。但是,如果圆的半径很大,则连续的源和水槽排列是最佳的。我们的数值框架引入了一种新的方法,用于在二维中使用扩散层在两个维度上设计胶体颗粒的带状结构,并在主要集中于一维溶质梯度的领域中打开了新的途径。
In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute flux. First we study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and flux decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute flux decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient between solute inside the source and the bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio between solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.