论文标题

大规模临床脑电图的张量分解揭示了可解释的脑生理模式

Tensor Decomposition of Large-scale Clinical EEGs Reveals Interpretable Patterns of Brain Physiology

论文作者

Gupta, Teja, Wagh, Neeraj, Rawal, Samarth, Berry, Brent, Worrell, Gregory, Varatharajah, Yogatheesan

论文摘要

识别脑电图(EEG)中的异常模式仍然是诊断几种神经系统疾病的基石。当前的临床脑电图审查过程在很大程度上取决于专家视觉审查,这是不可计算且容易出错的。为了扩大专家审查过程,使用无监督的方法对采矿人群级的脑电图模式产生了重大兴趣。当前的方法依赖于二维分解(例如,主和独立的组件分析)或深度表示学习(例如自动编码器,自我安排)。但是,大多数方法并不能利用脑电图的自然多维结构,并且缺乏解释性。在这项研究中,我们提出了一种使用规范多核分解的张量分解方法,以发现一组良性的人口级EEG模式,保留了EEG的自然多维结构(时间X Space X频率)。然后,我们使用一系列患者来验证其临床价值,包括不同的认知障碍阶段。我们的结果表明,发现的模式反映了生理上有意义的特征,并准确地分类了认知障碍(健康与轻度认知障碍与阿尔茨海默氏痴呆症的痴呆症)的阶段,其特征与经典和深度学习的基础相比较少。我们得出的结论是,人口级的脑电图张量的分解恢复了专家解释的脑电图模式,这些模式可以帮助研究较小的专业临床队列。

Identifying abnormal patterns in electroencephalography (EEG) remains the cornerstone of diagnosing several neurological diseases. The current clinical EEG review process relies heavily on expert visual review, which is unscalable and error-prone. In an effort to augment the expert review process, there is a significant interest in mining population-level EEG patterns using unsupervised approaches. Current approaches rely either on two-dimensional decompositions (e.g., principal and independent component analyses) or deep representation learning (e.g., auto-encoders, self-supervision). However, most approaches do not leverage the natural multi-dimensional structure of EEGs and lack interpretability. In this study, we propose a tensor decomposition approach using the canonical polyadic decomposition to discover a parsimonious set of population-level EEG patterns, retaining the natural multi-dimensional structure of EEGs (time x space x frequency). We then validate their clinical value using a cohort of patients including varying stages of cognitive impairment. Our results show that the discovered patterns reflect physiologically meaningful features and accurately classify the stages of cognitive impairment (healthy vs mild cognitive impairment vs Alzheimer's dementia) with substantially fewer features compared to classical and deep learning-based baselines. We conclude that the decomposition of population-level EEG tensors recovers expert-interpretable EEG patterns that can aid in the study of smaller specialized clinical cohorts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源