论文标题

蒙特卡洛方法的仿真中的量子对抗学习,以进行最大切割近似:QAOA不是最佳的

Quantum Adversarial Learning in Emulation of Monte-Carlo Methods for Max-cut Approximation: QAOA is not optimal

论文作者

Unsal, Cem M., Brady, Lucas T.

论文摘要

近期量子优势的主要候选者之一是变异量子算法类别,但是随着参数数量的增加,这些算法在优化变分参数方面遇到了经典困难。因此,重要的是要了解各种Ansätze生成目标状态和分布的表现和力量。为此,我们将仿真概念应用于变分量子退火和量子近似优化算法(QAOA),以表明QAOA的表现优于具有等值的参数数量的变异退火计划。我们的变异量子退火时间表基于一种新型的多项式参数化,可以使用相同的物理成分以与QAOA相似的无梯度方式进行优化。为了比较Ansätze类型的性能,我们开发了蒙特卡洛方法的统计概念。蒙特卡罗方法是计算机程序,它们生成随机变量,该变量近似于目标数,而目标数在计算上很难准确计算。虽然最著名的蒙特卡洛方法是蒙特卡洛的整合(例如扩散的蒙特卡洛或路径综合量子蒙特卡洛),但Qaoa本身就是一种蒙特卡洛方法,可以找到用于NP综合问题(例如Max-Cut)的良好解决方案。我们应用这些统计的蒙特卡洛概念来进一步阐明这些量子算法的理论框架。

One of the leading candidates for near-term quantum advantage is the class of Variational Quantum Algorithms, but these algorithms suffer from classical difficulty in optimizing the variational parameters as the number of parameters increases. Therefore, it is important to understand the expressibility and power of various ansätze to produce target states and distributions. To this end, we apply notions of emulation to Variational Quantum Annealing and the Quantum Approximate Optimization Algorithm (QAOA) to show that QAOA is outperformed by variational annealing schedules with equivalent numbers of parameters. Our Variational Quantum Annealing schedule is based on a novel polynomial parameterization that can be optimized in a similar gradient-free way as QAOA, using the same physical ingredients. In order to compare the performance of ansätze types, we have developed statistical notions of Monte-Carlo methods. Monte-Carlo methods are computer programs that generate random variables that approximate a target number that is computationally hard to calculate exactly. While the most well-known Monte-Carlo method is Monte-Carlo integration (e.g. Diffusion Monte-Carlo or path-integral quantum Monte-Carlo), QAOA is itself a Monte-Carlo method that finds good solutions to NP-complete problems such as Max-cut. We apply these statistical Monte-Carlo notions to further elucidate the theoretical framework around these quantum algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源