论文标题

在卡西状态下内流的渐近努塞尔数

Asymptotic Nusselt numbers for internal flow in the Cassie state

论文作者

Kane, Daniel, Hodes, Marc, Bazant, Martin Z., Kirk, Toby L.

论文摘要

我们考虑通过具有糖尿病的,平行板的微通道对称纹理的层状,完整发达的液体液体的液体流动。通过使用匹配的渐近扩展,我们可以分析地开发(表观流体动力)滑动长度和各种定义的Nusselt数字的表达式。我们的小参数($ε$)是山脊的音高除以微通道的高度。当山脊与流量平行时,我们量化了文献中Nusselt数字表达式中的误差,并提供了新的封闭形式结果。后者是准确到$ o \ left(ε^2 \右)$的,对于任何实心(脊)分数有效,而当前文献中的那些则准确至$ o \ left(ε^1 \ right)$,并且当实心分数接近零时,在重要极限中分解。当山脊面向(定期完全发达的)流动时,与忽略滑动长度的惯性效应相关的错误显示为$ o \ left(ε^3 \ Mathrm {re} \ right)$,其中$ \ m mathrm {re} $是基于Channel-Scale Reynolds的HydraMy HydraiL diameter。相应的Nusselt编号表达式是新的,其精度显示取决于雷诺数,peclet号码和prandtl编号,此外还取决于$ε$。操纵脊附近遇到的内部温度问题的解决方案表明,热散发电阻的经典结果可以更好地表达在多凝集功能方面。

We consider laminar, fully-developed, Poiseuille flows of liquid in the Cassie state through diabatic, parallel-plate microchannels symmetrically textured with isoflux ridges. Through the use of matched asymptotic expansions we analytically develop expressions for (apparent hydrodynamic) slip lengths and variously-defined Nusselt numbers. Our small parameter ($ε$) is the pitch of the ridges divided by the height of the microchannel. When the ridges are oriented parallel to the flow, we quantify the error in the Nusselt number expressions in the literature and provide a new closed-form result. The latter is accurate to $O\left(ε^2\right)$ and valid for any solid (ridge) fraction, whereas those in the current literature are accurate to $O\left(ε^1\right)$ and breakdown in the important limit when solid fraction approaches zero. When the ridges are oriented transverse to the (periodically fully-developed) flow, the error associated with neglecting inertial effects in the slip length is shown to be $O\left(ε^3\mathrm{Re}\right)$, where $\mathrm{Re}$ is the channel-scale Reynolds number based on its hydraulic diameter. The corresponding Nusselt number expressions are new and their accuracy is shown to be dependent on Reynolds number, Peclet number and Prandtl number in addition to $ε$. Manipulating the solution to the inner temperature problem encountered in the vicinity of the ridges shows that classic results for thermal spreading resistance are better expressed in terms of polylogarithm functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源