论文标题

通过迭代脱张

Lightweight Event-based Optical Flow Estimation via Iterative Deblurring

论文作者

Wu, Yilun, Paredes-Vallés, Federico, de Croon, Guido C. H. E.

论文摘要

受基于框架的方法的启发,基于事件的最先进的光流网络依赖于相关量的明确构造,这些相关量的计算和存储价格昂贵,使它们不适合具有有限的计算和能源预算的机器人应用。此外,相关量的尺度与分辨率较差,禁止它们估计高分辨率流量。我们观察到,事件的时空连续痕迹为寻求像素对应关系提供了自然的搜索方向,从而避免了依靠明确相关量的梯度作为此类搜索方向的梯度。我们介绍IDNET(迭代DeBlurring网络),这是一种轻巧但基于事件的高性能光流网络,可直接估算事件痕迹而无需使用相关量。我们进一步提出了两个迭代更新方案:“ ID”,它们在同一事件中进行迭代,而“ TID”会随着时间的推移以在线方式进行流媒体事件。我们表现​​最佳的ID模型在DSEC基准上设置了新的最新状态。同时,基本ID模型与先前的艺术具有竞争力,同时使用了80%的参数,在Nvidia Jetson Xavier NX上消耗了20倍的记忆足迹,并且运行速度快40%。此外,TID模型甚至更有效地提供了更快的推理速度和8毫秒的超低潜伏期,其成本仅为9%的性能下降,这使其成为当前能够实时操作同时保持体面绩效的文献中唯一的模型。

Inspired by frame-based methods, state-of-the-art event-based optical flow networks rely on the explicit construction of correlation volumes, which are expensive to compute and store, rendering them unsuitable for robotic applications with limited compute and energy budget. Moreover, correlation volumes scale poorly with resolution, prohibiting them from estimating high-resolution flow. We observe that the spatiotemporally continuous traces of events provide a natural search direction for seeking pixel correspondences, obviating the need to rely on gradients of explicit correlation volumes as such search directions. We introduce IDNet (Iterative Deblurring Network), a lightweight yet high-performing event-based optical flow network directly estimating flow from event traces without using correlation volumes. We further propose two iterative update schemes: "ID" which iterates over the same batch of events, and "TID" which iterates over time with streaming events in an online fashion. Our top-performing ID model sets a new state of the art on DSEC benchmark. Meanwhile, the base ID model is competitive with prior arts while using 80% fewer parameters, consuming 20x less memory footprint and running 40% faster on the NVidia Jetson Xavier NX. Furthermore, the TID model is even more efficient offering an additional 5x faster inference speed and 8 ms ultra-low latency at the cost of only a 9% performance drop, making it the only model among current literature capable of real-time operation while maintaining decent performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源