论文标题

基于管模型预测控制的异步计算

Asynchronous Computation of Tube-based Model Predictive Control

论文作者

Sieber, Jerome, Zanelli, Andrea, Leeman, Antoine P., Bennani, Samir, Zeilinger, Melanie N.

论文摘要

基于管子的模型预测控制(MPC)方法由于不确定性而与名义轨迹的偏差结合了偏差,以确保限制满意度。虽然在线计算管管的技术降低了保守性并提高了性能,但它们的计算复杂性很高。本文提出了系统级管MPC(SLTMPC)的异步计算机制,这是一种基于试管的MPC方法,可在标称轨迹和管子上进行优化。计算分别分为主要和次要过程,分别计算标称轨迹和管子。这使得以高频运行主要过程并将计算复杂的管计算移至次级过程。我们表明,次级过程可以连续更新管子,同时保留主要过程的递归可行性。

Tube-based model predictive control (MPC) methods bound deviations from a nominal trajectory due to uncertainties in order to ensure constraint satisfaction. While techniques that compute the tubes online reduce conservativeness and increase performance, they suffer from high and potentially prohibitive computational complexity. This paper presents an asynchronous computation mechanism for system level tube-MPC (SLTMPC), a recently proposed tube-based MPC method which optimizes over both the nominal trajectory and the tubes. Computations are split into a primary and a secondary process, computing the nominal trajectory and the tubes, respectively. This enables running the primary process at a high frequency and moving the computationally complex tube computations to the secondary process. We show that the secondary process can continuously update the tubes, while retaining recursive feasibility of the primary process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源