论文标题
信任您的$ \ nabla $:基于梯度的干预措施针对因果发现
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery
论文作者
论文摘要
从数据中推断出因果结构是科学中基本重要性的一项具有挑战性的任务。观察数据通常不足以独特地识别系统的因果结构。在进行干预措施(即实验)可以提高可识别性时,这些样本通常具有挑战性且获得昂贵。因此,因果发现的实验设计方法旨在通过估计最有用的干预目标来最大程度地减少干预措施的数量。在这项工作中,我们提出了一种基于梯度的新型干预靶向方法,缩写为Git,该方法“信任”基于梯度的因果发现框架的梯度估计器,以提供干预采集功能的信号。我们在模拟和实际数据集中提供了广泛的实验,并证明GIT与竞争基准相当,在低数据表中超过了它们。
Inferring causal structure from data is a challenging task of fundamental importance in science. Observational data are often insufficient to identify a system's causal structure uniquely. While conducting interventions (i.e., experiments) can improve the identifiability, such samples are usually challenging and expensive to obtain. Hence, experimental design approaches for causal discovery aim to minimize the number of interventions by estimating the most informative intervention target. In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function. We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines, surpassing them in the low-data regime.