论文标题

线性光谱图兰问题,用于具有给定色数的图表的扩展

Linear spectral Turan problems for expansions of graphs with given chromatic number

论文作者

She, Chuan-Ming, Fan, Yi-Zheng, Kang, Liying, Hou, Yaoping

论文摘要

$ r $均匀的超图是线性的,如果每两个边缘最多在一个顶点中相交。图$ f $的$ r $ expansion $ f^{r} $是$ r $均匀的超图,从$ f $获得的$ f $获得的每个边缘从$ f $的每个边缘放大了$ f $的每个边缘,$ r-2 $ diss的顶点$ r-r-2 $ disttex从$ f $的$ f $的顶点分离中,例如,分离的差异会被脱离差异。 Let $ex_{r}^{lin}(n,F^{r})$ and $spex_{r}^{lin}(n,F^{r})$ be the maximum number of edges and the maximum spectral radius of all $F^{r}$-free linear $r$-uniform hypergraphs with $n$ vertices, respectively.在本文中,我们介绍了$ ex_ {r}^{lin}(n,f^{r})$和$ spex_ {r} {r}^{lin,n,f^{r})$的尖锐(或渐近)界限(n,f^{r})$带有色数$ k $的图形。

An $r$-uniform hypergraph is linear if every two edges intersect in at most one vertex. The $r$-expansion $F^{r}$ of a graph $F$ is the $r$-uniform hypergraph obtained from $F$ by enlarging each edge of $F$ with a vertex subset of size $r-2$ disjoint from the vertex set of $F$ such that distinct edges are enlarged by disjoint subsets. Let $ex_{r}^{lin}(n,F^{r})$ and $spex_{r}^{lin}(n,F^{r})$ be the maximum number of edges and the maximum spectral radius of all $F^{r}$-free linear $r$-uniform hypergraphs with $n$ vertices, respectively. In this paper, we present the sharp (or asymptotic) bounds of $ex_{r}^{lin}( n,F^{r})$ and $spex_{r}^{lin}(n,F^{r})$ by establishing the connection between the spectral radii of linear hypergraphs and those of their shadow graphs, where $F$ is a $(k+1)$-color critical graph or a graph with chromatic number $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源