论文标题
自由移动小鼠抑制性神经元的双向光遗传学控制
Bidirectional optogenetic control of inhibitory neurons in freely-moving mice
论文作者
论文摘要
目的:可激发细胞的光遗传操作能够激活或沉默特定类型的神经元。通过表达两种类型的外源蛋白,可以使用一个波长的光去极化单个神经元,并与另一种波长进行超极化。但是,将两个不同的波长路由到相同的大脑位置通常需要笨重的光学元件,这些光学元件不能植入自由移动动物的头部。 方法:我们开发了一种无镜头的方法,用于构建双色头部安装的基于光纤的光学单元:任何两个波长都可以合并。 结果:在这里,每个单元由一个450 nm和一个638 nm激光二极管组成,在50微米多摩德纤维的末端产生0.4兆瓦的光功率和8 mW。为了创建一个多色/多站点光电设备,安装在微旋翼上的四翼硅探针配备了两个双色和两个单色单元,总重量低于3 g。将装置植入表达蓝光敏感阳离子通道CHR2和红光敏感氯化物泵的小鼠中,在白蛋白酶 - 免疫反应性(PV)抑制性神经元中。双色单元与记录电极的组合没有电磁干扰,即使在运行延长后,设备加热也低于7°C。 结论:使用这些设备,可以激活和沉默相同的皮质PV细胞。这是针对自由移动小鼠的新皮层和海马的多个细胞实现的。 意义:该技术可用于控制具有独特遗传特征的空间混合神经元,并用于控制认知任务期间皮质神经元的峰值时间。
Objective: Optogenetic manipulations of excitable cells enable activating or silencing specific types of neurons. By expressing two types of exogenous proteins, a single neuron can be depolarized using light of one wavelength and hyperpolarized with another. However, routing two distinct wavelengths into the same brain locality typically requires bulky optics that cannot be implanted on the head of a freely-moving animal. Methods: We developed a lens-free approach for constructing dual-color head-mounted, fiber-based optical units: any two wavelengths can be combined. Results: Here, each unit was comprised of one 450 nm and one 638 nm laser diode, yielding light power of 0.4 mW and 8 mW at the end of a 50 micrometer multimode fiber. To create a multi-color/multi-site optoelectronic device, a four-shank silicon probe mounted on a microdrive was equipped with two dual-color and two single-color units, for a total weight under 3 g. Devices were implanted in mice expressing the blue-light sensitive cation channel ChR2 and the red-light sensitive chloride pump Jaws in parvalbumin-immunoreactive (PV) inhibitory neurons. The combination of dual-color units with recording electrodes was free from electromagnetic interference, and device heating was under 7°C even after prolonged operation. Conclusion: Using these devices, the same cortical PV cell could be activated and silenced. This was achieved for multiple cells both in neocortex and hippocampus of freely-moving mice. Significance: This technology can be used for controlling spatially intermingled neurons that have distinct genetic profiles, and for controlling spike timing of cortical neurons during cognitive tasks.