论文标题
基于机器学习的方法,用于在MIMO系统中选择可重构天线模式
Machine Learning-based Methods for Reconfigurable Antenna Mode Selection in MIMO Systems
论文作者
论文摘要
MIMO技术已实现了空间多访问,并提供了更高的系统频谱效率(SE)。但是,该技术具有一些缺点,例如增加系统中复杂性的大量RF链。解决此问题的解决方案之一可能是采用可重构天线(RAS),这些天线(RAS)可以在传输过程中支持不同的辐射模式,以提供更少的RF链提供相似的性能。在这方面,该系统旨在最大程度地提高SE相对于最佳的波束形成设计和RA模式选择。由于此问题的非跨性别性,我们提出了基于机器学习的方法,用于在动态和静态方案中选择RA天线模式。在静态场景中,我们介绍了如何通过深层卷积神经网络(DCNN)解决RA模式选择问题,这是本质上的整数优化问题。由离线和在线培训组成的多军伴随(MAB)用于动态RA州选择。对于拟议的mAB,优化问题的计算复杂性减少了。最后,将动态和静态场景中提出的方法与详尽的搜索和随机选择方法进行了比较。
MIMO technology has enabled spatial multiple access and has provided a higher system spectral efficiency (SE). However, this technology has some drawbacks, such as the high number of RF chains that increases complexity in the system. One of the solutions to this problem can be to employ reconfigurable antennas (RAs) that can support different radiation patterns during transmission to provide similar performance with fewer RF chains. In this regard, the system aims to maximize the SE with respect to optimum beamforming design and RA mode selection. Due to the non-convexity of this problem, we propose machine learning-based methods for RA antenna mode selection in both dynamic and static scenarios. In the static scenario, we present how to solve the RA mode selection problem, an integer optimization problem in nature, via deep convolutional neural networks (DCNN). A Multi-Armed-bandit (MAB) consisting of offline and online training is employed for the dynamic RA state selection. For the proposed MAB, the computational complexity of the optimization problem is reduced. Finally, the proposed methods in both dynamic and static scenarios are compared with exhaustive search and random selection methods.