论文标题

除了基于Mahalanobis的基于文本OOD检测的分数

Beyond Mahalanobis-Based Scores for Textual OOD Detection

论文作者

Colombo, Pierre, Gomes, Eduardo D. C., Staerman, Guillaume, Noiry, Nathan, Piantanida, Pablo

论文摘要

深度学习方法增强了NLP系统在现实生活应用中的采用。但是,事实证明,随着时间的流逝,它们很容易受到分配的变化,这可能会导致生产系统中严重的功能障碍,敦促从业人员通过神经网络的镜头开发工具以检测分布外(OOD)样本。在本文中,我们介绍了基于符合操作要求的变压器体系结构的分类器的新型OOD检测器,它是不受监督和快速计算的。受信任的效率取决于一个富有成果的想法,即所有隐藏的层都带有相关信息来检测OOD示例。基于此,对于给定的输入,值得信赖的是(i)汇总此信息和(ii)通过利用培训分布来计算相似性得分,利用强大的数据深度概念。我们广泛的数值实验涉及51K模型配置,包括各种检查点,种子和数据集,并证明可信赖的实现最先进的性能。特别是,它将以前的AUROC超过3点提高。

Deep learning methods have boosted the adoption of NLP systems in real-life applications. However, they turn out to be vulnerable to distribution shifts over time which may cause severe dysfunctions in production systems, urging practitioners to develop tools to detect out-of-distribution (OOD) samples through the lens of the neural network. In this paper, we introduce TRUSTED, a new OOD detector for classifiers based on Transformer architectures that meets operational requirements: it is unsupervised and fast to compute. The efficiency of TRUSTED relies on the fruitful idea that all hidden layers carry relevant information to detect OOD examples. Based on this, for a given input, TRUSTED consists in (i) aggregating this information and (ii) computing a similarity score by exploiting the training distribution, leveraging the powerful concept of data depth. Our extensive numerical experiments involve 51k model configurations, including various checkpoints, seeds, and datasets, and demonstrate that TRUSTED achieves state-of-the-art performances. In particular, it improves previous AUROC over 3 points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源