论文标题

J. Tits之后,出色的简单谎言组$ f_ {4(-20)} $

The exceptional simple Lie group $F_{4(-20)}$, after J. Tits

论文作者

Valette, Alain

论文摘要

这是一张半响起的论文,首先,我们从\ cite {tits},厚度平面$ h^2(CAY)$ cayley数字$ cay $的广告山雀的合成结构开始,这是其自动形态群体,这是其出色的简单lie组$ g = f_ = f_ = f_ = f_ {4(-20)} $。令$ g = kan $是伊瓦川分解。我们的贡献是: a)明确写下$ n $在$ h^2(cay)$ tits'model上的动作,面对$ cay $的关联性。 b)如果$ man $表示$ g $的最小抛物线亚组,以$ m $几何形式来表征。

This is a semi-survey paper, where we start by advertising Tits' synthetic construction from \cite{Tits}, of the hyperbolic plane $H^2(Cay)$ over the Cayley numbers $Cay$, and of its automorphism group which is the exceptional simple Lie group $G=F_{4(-20)}$. Let $G=KAN$ be the Iwasawa decomposition. Our contributions are: a) Writing down explicitly the action of $N$ on $H^2(Cay)$ in Tits'model, facing the lack of associativity of $Cay$. b) If $MAN$ denotes the minimal parabolic subgroup of $G$, characterizing $M$ geometrically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源