论文标题

自动驾驶系统数据采集和处理平台

Automated Driving Systems Data Acquisition and Processing Platform

论文作者

Xia, Xin, Meng, Zonglin, Han, Xu, Li, Hanzhao, Tsukiji, Takahiro, Xu, Runsheng, Zhang, Zhaoliang, Ma, Jiaqi

论文摘要

本文介绍了基于连接的自动化车辆(CAV)合作感知的车辆轨迹提取,重建和评估的自动驾驶系统(ADS)数据采集和处理平台。该平台提供了从原始高级感觉数据收集到数据处理的整体管道,该管道可以从多个CAVS处理传感器数据,并在地图和FRENET坐标中提取对象的身份(ID)数字(ID),位置,速度,速度和方向信息。首先,提出了广告数据采集和分析平台。具体而言,显示了实验性CAVS平台和传感器配置,并使用LIDAR信息,包括基于深度学习的对象检测算法,其中包括一种晚期的融合方案,以利用合作感感知来融合来自多个CAVS的检测对象,并引入了多模具跟踪方法。为了进一步增强对象检测和跟踪结果,生成了由点云和向量图组成的高清晰度图,并将其转发到世界模型,以滤除道路上的对象,并在FRENET坐标和车道信息中提取对象的坐标。另外,提出了一种后处理方法,以从对象跟踪算法中完善轨迹。为了解决对象跟踪算法的ID开关问题,提出了一种基于模糊的基于模糊的方法来检测同一对象的不连续轨迹。最后,提出了包括对象检测和跟踪以及晚期融合方案在内的结果,并讨论了算法的后处理算法的改善和拆卸较高的删除,从而确认了提出的整体数据收集和处理平台的功能和有效性。

This paper presents an automated driving system (ADS) data acquisition and processing platform for vehicle trajectory extraction, reconstruction, and evaluation based on connected automated vehicle (CAV) cooperative perception. This platform presents a holistic pipeline from the raw advanced sensory data collection to data processing, which can process the sensor data from multiple CAVs and extract the objects' Identity (ID) number, position, speed, and orientation information in the map and Frenet coordinates. First, the ADS data acquisition and analytics platform are presented. Specifically, the experimental CAVs platform and sensor configuration are shown, and the processing software, including a deep-learning-based object detection algorithm using LiDAR information, a late fusion scheme to leverage cooperative perception to fuse the detected objects from multiple CAVs, and a multi-object tracking method is introduced. To further enhance the object detection and tracking results, high definition maps consisting of point cloud and vector maps are generated and forwarded to a world model to filter out the objects off the road and extract the objects' coordinates in Frenet coordinates and the lane information. In addition, a post-processing method is proposed to refine trajectories from the object tracking algorithms. Aiming to tackle the ID switch issue of the object tracking algorithm, a fuzzy-logic-based approach is proposed to detect the discontinuous trajectories of the same object. Finally, results, including object detection and tracking and a late fusion scheme, are presented, and the post-processing algorithm's improvements in noise level and outlier removal are discussed, confirming the functionality and effectiveness of the proposed holistic data collection and processing platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源