论文标题

使用功率和广义对数矩的非高斯贝叶斯过滤器

A Non-Gaussian Bayesian Filter Using Power and Generalized Logarithmic Moments

论文作者

Wu, Guangyu, Lindquist, Anders

论文摘要

在本文中,我们旨在提出一个一致的非高斯贝叶斯滤波器,该过滤器是系统状态是连续函数的。真正的系统状态的分布以及系统和观察噪声的分布仅被认为是Lebesgue可以集成的,而没有对它们属于哪些功能类别的先前约束。这种类型的滤波器在理论和实践中都具有重要的优点,它能够改善粒子滤波器的尺寸诅咒,粒子过滤器是一种流行的非高斯贝叶斯滤波器,系统状态的系统状态被离散粒子和相应的重量进行了参数化。我们首先提出了一种新型的统计数据,称为广义对数时刻。与功率矩一起,它们被用来形成密度替代物,参数为分析函数,以近似真实的系统状态。从提议的密度替代的参数到功率力矩和广义对数矩的映射被证明是一种差异性,并确定了存在一个独特的密度替代物,可以满足两种力矩条件。这种差异性还使我们能够使用梯度方法来确定参数时的凸优化问题。最后但并非最不重要的一点是,仿真结果揭示了使用两组矩估计复杂功能混合物的优势。还给出了机器人定位模拟,作为验证提出的过滤方案的工程应用程序。

In this paper, we aim to propose a consistent non-Gaussian Bayesian filter of which the system state is a continuous function. The distributions of the true system states, and those of the system and observation noises, are only assumed Lebesgue integrable with no prior constraints on what function classes they fall within. This type of filter has significant merits in both theory and practice, which is able to ameliorate the curse of dimensionality for the particle filter, a popular non-Gaussian Bayesian filter of which the system state is parameterized by discrete particles and the corresponding weights. We first propose a new type of statistics, called the generalized logarithmic moments. Together with the power moments, they are used to form a density surrogate, parameterized as an analytic function, to approximate the true system state. The map from the parameters of the proposed density surrogate to both the power moments and the generalized logarithmic moments is proved to be a diffeomorphism, establishing the fact that there exists a unique density surrogate which satisfies both moment conditions. This diffeomorphism also allows us to use gradient methods to treat the convex optimization problem in determining the parameters. Last but not least, simulation results reveal the advantage of using both sets of moments for estimating mixtures of complicated types of functions. A robot localization simulation is also given, as an engineering application to validate the proposed filtering scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源