论文标题
将薄弱的监督提升到结构化预测
Lifting Weak Supervision To Structured Prediction
论文作者
论文摘要
弱监督(WS)是一系列丰富的技术,可以通过易于获得但可能从各种来源汇总但可能嘈杂的标签估计来产生伪标记。 WS在理论上是对二进制分类的理解,在此简单方法可以始终如一地估计伪标列噪声速率。使用此结果,已经表明,在伪标记上训练的下游模型具有概括性保证与在干净标签上训练的人几乎相同。虽然这令人兴奋,但用户通常希望将WS用于结构化预测,其中输出空间由二进制或多类标签组组成,例如:排名,图形,流形等。 WS对二元分类的有利理论特性是否升至此设置?我们在各种情况下以肯定的方式回答了这个问题。对于在有限的度量空间中采用值的标签,我们引入了基于伪 - 欧几里达嵌入和张量分解的新技术,提供了几乎一致的噪声率估计器。对于恒定呈侵蚀的riemannian歧管中的标签,我们引入了新的不变式,这些不变性也会产生一致的噪声率估计。在这两种情况下,在使用灵活的下游模型一起使用所得的伪标记时,我们获得的泛化保证与接受干净数据训练的模型几乎相同。我们的几个结果可以被视为具有嘈杂标签的结构化预测中的鲁棒性,可能具有独立的利益。经验评估验证了我们的主张,并显示了所提出方法的优点。
Weak supervision (WS) is a rich set of techniques that produce pseudolabels by aggregating easily obtained but potentially noisy label estimates from a variety of sources. WS is theoretically well understood for binary classification, where simple approaches enable consistent estimation of pseudolabel noise rates. Using this result, it has been shown that downstream models trained on the pseudolabels have generalization guarantees nearly identical to those trained on clean labels. While this is exciting, users often wish to use WS for structured prediction, where the output space consists of more than a binary or multi-class label set: e.g. rankings, graphs, manifolds, and more. Do the favorable theoretical properties of WS for binary classification lift to this setting? We answer this question in the affirmative for a wide range of scenarios. For labels taking values in a finite metric space, we introduce techniques new to weak supervision based on pseudo-Euclidean embeddings and tensor decompositions, providing a nearly-consistent noise rate estimator. For labels in constant-curvature Riemannian manifolds, we introduce new invariants that also yield consistent noise rate estimation. In both cases, when using the resulting pseudolabels in concert with a flexible downstream model, we obtain generalization guarantees nearly identical to those for models trained on clean data. Several of our results, which can be viewed as robustness guarantees in structured prediction with noisy labels, may be of independent interest. Empirical evaluation validates our claims and shows the merits of the proposed method.