论文标题

Furstenberg套装的尺寸和Bourgain投影定理的扩展

Dimensions of Furstenberg sets and an extension of Bourgain's projection theorem

论文作者

Shmerkin, Pablo, Wang, Hong

论文摘要

我们表明,$(s,t)$ - furstenberg集的Hausdorff尺寸至少为$ s+t/2+ε$,其中$ε> 0 $仅取决于$ s $和$ t $。这改善了以前最著名的限制,价格为$ 2S <t \ le 1+ε(s,t)$,尤其是自1999年以来的首次改进到经典$ s $ s $ -s -furstenberg套件的尺寸,价格为$ s <1/2 $。我们从最低限度的非集中假设下的相应离散的发病率中推断出来,该假设同时扩展了波尔加因的离散投影和总成果定理。这些证明是基于t。〜orponen的最新离散发病率和第一作者,以及$(s,t)$和$(t/2,s+t/2)$ - furstenberg set之间的一定双重性。

We show that the Hausdorff dimension of $(s,t)$-Furstenberg sets is at least $s+t/2+ε$, where $ε>0$ depends only on $s$ and $t$. This improves the previously best known bound for $2s<t\le 1+ε(s,t)$, in particular providing the first improvement since 1999 to the dimension of classical $s$-Furstenberg sets for $s<1/2$. We deduce this from a corresponding discretized incidence bound under minimal non-concentration assumptions, that simultaneously extends Bourgain's discretized projection and sum-product theorems. The proofs are based on a recent discretized incidence bound of T.~Orponen and the first author and a certain duality between $(s,t)$ and $(t/2,s+t/2)$-Furstenberg sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源