论文标题
水在橄榄岩液体中的溶解度和岩石行星上蒸汽气氛的流行率
Solubility of water in peridotite liquids and the prevalence of steam atmospheres on rocky planets
论文作者
论文摘要
大气是行星表面与其内部表面之间的时间集成质量交换的产物。在地球和其他行星体上,岩浆海洋可能标志着大气形成的重要事件,在此期间,蒸汽和碳富含碳和碳富含大气的大气可能已经产生。但是,由于缺乏对合适成分液体中水的溶解度的限制,地球早期大气层以及其他岩石行星周围的人的性质尚不清楚。在这里,我们确定了14种橄榄岩液体中的水溶性,代表地球的地幔,在激光加热的空气动力学悬浮炉中合成。我们在恒定温度(2173 $ \ pm $ 50 K)和总压力(1 bar)之间探索-1.9和+6.0原木单位之间的氧气(fo $ _2 $)和+6.0日志单位。由此产生的FH $ _2 $ o的范围从0到0.027 bar,fh $ _2 $从0到0.064 bar。总h $ _2 $ o内容是通过3550厘米$^{ - 1} $的传输FTIR光谱法确定的,并应用Beer-Lambert Law。液体中的水分分数为$ \ propto $(fh $ _2 $ o)$^{0.5} $,证明其解散为OH。 The data are fit by a solubility coefficient of 524$\pm$16 ppmw/bar$^{0.5}$, for a molar absorption coefficient, $ε_{3550}$, of 6.3$\pm$0.3 m$^2$/mol in basaltic glasses or 647$\pm$25 ppmw/bar$^{0.5}$, with $ε_{3550} $ = 5.1 $ \ pm $ 30万$^2 $/mol用于植物眼镜。这些溶解度常数比1623 K和1 bar的玄武岩液体低10-25%。较高的温度降低了水溶性,从而抵消了橄榄岩融化的更大的解聚,否则将增加相对于玄武岩液体的h $ _2 $ o溶解度。由于水的溶解度相对于CO $ _2 $的溶解度仍然很高,因此蒸汽气氛很少见,尽管它们可能在渗透体的氧化条件下形成,提供高的H/C比率。
Atmospheres are products of time-integrated mass exchange between the surface of a planet and its interior. On Earth and other planetary bodies, magma oceans likely marked significant atmosphere-forming events, during which both steam- and carbon-rich atmospheres may have been generated. However, the nature of Earth's early atmosphere, and those around other rocky planets, remains unclear for lack of constraints on the solubility of water in liquids of appropriate composition. Here we determine water solubility in 14 peridotite liquids, representative of Earth's mantle, synthesised in a laser-heated aerodynamic levitation furnace. We explore oxygen fugacities (fO$_2$) between -1.9 and +6.0 log units relative to the iron-wüstite buffer at constant temperature (2173$\pm$50 K) and total pressure (1 bar). The resulting fH$_2$O ranged from 0 to 0.027 bar and fH$_2$ from 0 to 0.064 bar. Total H$_2$O contents were determined by transmission FTIR spectroscopy from the absorption band at 3550cm$^{-1}$ and applying the Beer-Lambert law. The mole fraction of water in the liquid is $\propto$ (fH$_2$O)$^{0.5}$, attesting to its dissolution as OH. The data are fit by a solubility coefficient of 524$\pm$16 ppmw/bar$^{0.5}$, for a molar absorption coefficient, $ε_{3550}$, of 6.3$\pm$0.3 m$^2$/mol in basaltic glasses or 647$\pm$25 ppmw/bar$^{0.5}$, with $ε_{3550}$ = 5.1$\pm$0.3m$^2$/mol for peridotitic glasses. These solubility constants are 10-25 % lower than those for basaltic liquids at 1623 K and 1 bar. Higher temperature lowers water solubility, offsetting the greater depolymerisation of peridotite melts that would otherwise increase H$_2$O solubility relative to basaltic liquids. Because the solubility of water remains high relative to that of CO$_2$, steam atmospheres are rare, although they may form under oxidising conditions on telluric bodies, provided high H/C ratios prevail.