论文标题
绿色功能和不变量估计非元素形式的椭圆均匀化
Green function and invariant measure estimates for nondivergence form elliptic homogenization
论文作者
论文摘要
我们证明,在以非散发形式对椭圆形方程的体积同质化的背景下,对抛物线绿色函数和固定不变度的定量估计值。因此,我们为相应的扩散过程获得了淬灭的局部CLT,并为环境过程提供了定量的磨性估计。这些结果中的每一个的特征是确定性(在环境方面)估计值,这些估计值高于随机的``最小值''长度尺度,即我们急剧估计的随机力矩。
We prove quantitative estimates on the the parabolic Green function and the stationary invariant measure in the context of stochasic homogenization of elliptic equations in nondivergence form. We consequently obtain a quenched, local CLT for the corresponding diffusion process and a quantitative ergodicity estimate for the environmental process. Each of these results are characterized by deterministic (in terms of the environment) estimates which are valid above a random, ``minimal'' length scale, the stochastic moments of which we estimate sharply.