论文标题

绿色功能和不变量估计非元素形式的椭圆均匀化

Green function and invariant measure estimates for nondivergence form elliptic homogenization

论文作者

Armstrong, Scott, Fehrman, Benjamin, Lin, Jessica

论文摘要

我们证明,在以非散发形式对椭圆形方程的体积同质化的背景下,对抛物线绿色函数和固定不变度的定量估计值。因此,我们为相应的扩散过程获得了淬灭的局部CLT,并为环境过程提供了定量的磨性估计。这些结果中的每一个的特征是确定性(在环境方面)估计值,这些估计值高于随机的``最小值''长度尺度,即我们急剧估计的随机力矩。

We prove quantitative estimates on the the parabolic Green function and the stationary invariant measure in the context of stochasic homogenization of elliptic equations in nondivergence form. We consequently obtain a quenched, local CLT for the corresponding diffusion process and a quantitative ergodicity estimate for the environmental process. Each of these results are characterized by deterministic (in terms of the environment) estimates which are valid above a random, ``minimal'' length scale, the stochastic moments of which we estimate sharply.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源