论文标题

从WSR-88D开放雷达产品生成器得出的基于深度学习的速度交易算法

A Deep Learning-based Velocity Dealiasing Algorithm Derived from the WSR-88D Open Radar Product Generator

论文作者

Veillette, Mark S., Kurdzo, James M., Stepanian, Phillip M., McDonald, Joseph, Samsi, Siddharth, Cho, John Y. N.

论文摘要

多普勒天气雷达提供的径向速度估计是操作预测者使用的关键测量值,用于检测和监测影响生命的风暴。用于产生这些测量结果的抽样方法本质上易于混叠,这会在有大风的区域产生模棱两可的速度值,并且需要使用速度交易算法(VDA)进行校正。在美国,天气监视雷达1988多普勒(WSR-88D)开放雷达产品发生器(ORPG)是一个提供世界一流VDA的处理环境;但是,该算法很复杂,很难将其移植到WSR-88D网络之外的其他雷达系统。在这项工作中,深层神经网络(DNN)用于模拟二维WSR-88D ORPG处理算法。结果表明,DNN,特别是定制的U-NET,对于构建准确,快速且可用于多种雷达类型的VDA非常有效。为了训练DNN模型,生成了一个大数据集,其中包含折叠和交易速度对的对齐样品。该数据集包含从WSR-88D Level-II和级别III档案中收集的样品,并将ORPG交易算法输出作为真理来源。使用此数据集,对U-NET进行了训练,以产生速度图像的每个点的折叠数。使用WSR-88D数据介绍了几个性能指标。该算法还应用于其他非WSR-88D雷达系统,以证明对其他硬件/软件接口的可移植性。介绍了该方法的广泛适用性的讨论,包括其他级别III算法如何从这种方法中受益。

Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds, and needs to be corrected using a velocity dealiasing algorithm (VDA). In the US, the Weather Surveillance Radar-1988 Doppler (WSR-88D) Open Radar Product Generator (ORPG) is a processing environment that provides a world-class VDA; however, this algorithm is complex and can be difficult to port to other radar systems outside of the WSR-88D network. In this work, a Deep Neural Network (DNN) is used to emulate the 2-dimensional WSR-88D ORPG dealiasing algorithm. It is shown that a DNN, specifically a customized U-Net, is highly effective for building VDAs that are accurate, fast, and portable to multiple radar types. To train the DNN model, a large dataset is generated containing aligned samples of folded and dealiased velocity pairs. This dataset contains samples collected from WSR-88D Level-II and Level-III archives, and uses the ORPG dealiasing algorithm output as a source of truth. Using this dataset, a U-Net is trained to produce the number of folds at each point of a velocity image. Several performance metrics are presented using WSR-88D data. The algorithm is also applied to other non-WSR-88D radar systems to demonstrate portability to other hardware/software interfaces. A discussion of the broad applicability of this method is presented, including how other Level-III algorithms may benefit from this approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源