论文标题

来自偏心二进制轨道的线性和非线性记忆重力波信号的频率空间推导

Frequency space derivation of linear and non-linear memory gravitational wave signals from eccentric binary orbits

论文作者

Hait, Arpan, Mohanty, Subhendra, Prakash, Suraj

论文摘要

重力波(GW)信号中的记忆效应是现象,其中两个惯性GW检测器的相对位置由于GW通过它们的通过而经历了永久性位移。记忆信号的测量是将来观察结果的重要目标,因为它在观测值之间建立了与诸如软 - 灰色定理之类的现场理论结果之间的联系。从理论上讲,内存信号是在双曲线轨道中的二进制源的领先顺序四极公式上预测的。这可以在Advanced Ligo,Einstein-Telescope或Lisa的观测领域中,用于黑洞,质量$ \ sim $ $ $ $ O(10^3 \,m_ \ odot $),由银河系中心的超级质量黑洞散布。除了直接的内存组件外,还从通过融合二进制文件发出的主要GW chirp信号发出的次级GW中还有一个非线性内存信号。在本文中,我们使用现场理论方法来计算偏心椭圆和双曲线二进制轨道的散射幅度,计算引力波信号及其能量谱。字段理论计算使我们直接在频率空间中直接的线性和非线性内存信号的重力波形。频域模板可用于从数据中提取信号。我们将结果与文献中线性和非线性内存信号的其他计算进行了比较,并指出了我们在计算中发现的新颖功能,例如来自双曲线轨道的线性内存中的$ \ log(ω)$项的存在。

The memory effect in gravitational wave (GW) signals is the phenomenon, wherein the relative position of two inertial GW detectors undergoes a permanent displacement owing to the passage of GWs through them. Measurement of the memory signal is an important target for future observations as it establishes a connection between observations with field-theoretic results like the soft-graviton theorems. Theoretically, the memory signal is predicted at the leading order quadrupole formula for sources like binaries in hyperbolic orbits. This can be in the realm of observations by Advanced LIGO, Einstein-Telescope, or LISA for black-holes with masses $\sim$ $O(10^3 \, M_\odot$) scattered by the super-massive black-hole at the galactic center. Apart from the direct memory component there is a non-linear memory signal in the secondary GW emitted from the primary GW chirp-signals emitted by coalescing binaries. In this paper, we compute the gravitational wave signals and their energy spectrum using the field-theoretic method by computing the scattering amplitudes for eccentric elliptical and hyperbolic binary orbits. The field theoretic calculation gives us the gravitational waveforms of linear and non-linear memory signals directly in the frequency space. The frequency domain templates are useful for extracting signals from the data. We compare our results with other calculations of linear and non-linear memory signals in literature and point out novel features we find in our calculations like the presence of $\log(ω)$ terms in the linear memory from hyperbolic orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源