论文标题
生物随机步行:疾病基因优先次序的多摩学整合
Biological Random Walks: multi-omics integration for disease gene prioritization
论文作者
论文摘要
动机:在过去的十年中,基于网络的方法已被证明可用于确定人类互动中的疾病模块,通常提供有关关键机制的见解并指导寻求治疗靶标。这更重要,因为对潜在基因候选者的实验研究是一项昂贵的任务,因此并不总是可行的选择。另一方面,许多生物信息来源都存在于互动群以外,重要的研究方向是设计有效的技术以进行整合。结果:在这项工作中,我们介绍了人类互动组中疾病基因优先次序的生物随机步行(BRW)方法。所提出的框架在集成框架内利用多个生物来源。我们对BRW的表现对公认的基线进行了广泛的比较研究。可用性和实现:所有代码均可公开可用,可以在\ url {https://github.com/leom93/biogicalRandomWalks}下载。我们使用了公开可用的数据集,补充材料中提供了有关其检索的详细信息以及预处理的详细信息。
Motivation: Over the past decade, network-based approaches have proven useful in identifying disease modules within the human interactome, often providing insights into key mechanisms and guiding the quest for therapeutic targets. This is all the more important, since experimental investigation of potential gene candidates is an expensive task, thus not always a feasible option. On the other hand, many sources of biological information exist beyond the interactome and an important research direction is the design of effective techniques for their integration. Results: In this work, we introduce the Biological Random Walks (BRW) approach for disease gene prioritization in the human interactome. The proposed framework leverages multiple biological sources within an integrated framework. We perform an extensive, comparative study of BRW's performance against well-established baselines. Availability and implementation: All code is publicly available and can be downloaded at \url{https://github.com/LeoM93/BiologicalRandomWalks}. We used publicly available datasets, details on their retrieval and preprocessing are provided in the supplementary material.