论文标题

从卫星衍生的SST-SSH协同作用4DVARNET的海面电流反转

Inversion of sea surface currents from satellite-derived SST-SSH synergies with 4DVarNets

论文作者

Fablet, Ronan, Chapron, Bertrand, Sommer, Julien Le, Sévellec, Florian

论文摘要

卫星高度测定是直接观察海面动力学的独特方法。但是,这仅限于海面速度的表面受限的地质成分。但是,对于低于100〜km的水平尺度和低于10〜天的时间尺度,预计年龄型动力学将是显着的。海洋一般循环模型的同化可能仅显示出这种年龄性成分的一部分。在这里,我们探索了一种基于学习的方案,以更好地利用观察到的海面示踪剂(尤其是海面高度(SSH)和海面温度(SST))之间的协同作用,以更好地告知海面电流。更具体地说,我们开发了一个4DVARNET方案,该方案利用可训练的观测值和{\ em a先验}项来利用变异数据同化公式。在墨西哥湾流的一个区域中进行的观察系统模拟实验(OSSE)表明,SST-SSH协同作用可以揭示2.5-3.0天的海面速度,而水平尺度为0.5 $^\ Circ $ -0.7 $^\ Circ $,包括大约$ 47 \%$ 47 \%的ageostrophic Dynamics(包括大约ageostrophic Dynamics)。对不同观察数据的贡献的分析,即沿轨道高度测定,广泛的SWOT高度测定和SST数据的分析,强调了SST特征在水平空间尺度上重建的作用,范围从\ nicefrac {1}} {1}} {20}} $^\ cird $ circ $ tock $ nick $ nicefrac = $} $} $} $} $}。

Satellite altimetry is a unique way for direct observations of sea surface dynamics. This is however limited to the surface-constrained geostrophic component of sea surface velocities. Ageostrophic dynamics are however expected to be significant for horizontal scales below 100~km and time scale below 10~days. The assimilation of ocean general circulation models likely reveals only a fraction of this ageostrophic component. Here, we explore a learning-based scheme to better exploit the synergies between the observed sea surface tracers, especially sea surface height (SSH) and sea surface temperature (SST), to better inform sea surface currents. More specifically, we develop a 4DVarNet scheme which exploits a variational data assimilation formulation with trainable observations and {\em a priori} terms. An Observing System Simulation Experiment (OSSE) in a region of the Gulf Stream suggests that SST-SSH synergies could reveal sea surface velocities for time scales of 2.5-3.0 days and horizontal scales of 0.5$^\circ$-0.7$^\circ$, including a significant fraction of the ageostrophic dynamics ($\approx$ 47\%). The analysis of the contribution of different observation data, namely nadir along-track altimetry, wide-swath SWOT altimetry and SST data, emphasizes the role of SST features for the reconstruction at horizontal spatial scales ranging from \nicefrac{1}{20}$^\circ$ to \nicefrac{1}{4}$^\circ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源