论文标题

更快的随机一阶方法,用于最大样品量子层造影

Faster Stochastic First-Order Method for Maximum-Likelihood Quantum State Tomography

论文作者

Tsai, Chung-En, Cheng, Hao-Chung, Li, Yen-Huan

论文摘要

在最大似然量子层析成像中,样本量和尺寸均随量子数的数量而成倍增长。因此,需要开发一种随机的一阶方法,就像现代机器学习的随机梯度下降一样,以计算最大样品估计。为此,我们提出了一种带有Burg熵的称为随机镜下降的算法。它的预期优化错误以$ o(\ sqrt {(1 / t)d \ log t})$ rate的速率消失,其中$ d $和$ t $分别表示迭代的尺寸和数量。它的触电时间复杂性为$ O(d^3)$,与样本量无关。据我们所知,目前,这是最大样品量子层造影的计算最快的随机一阶方法。

In maximum-likelihood quantum state tomography, both the sample size and dimension grow exponentially with the number of qubits. It is therefore desirable to develop a stochastic first-order method, just like stochastic gradient descent for modern machine learning, to compute the maximum-likelihood estimate. To this end, we propose an algorithm called stochastic mirror descent with the Burg entropy. Its expected optimization error vanishes at a $O ( \sqrt{ ( 1 / t ) d \log t } )$ rate, where $d$ and $t$ denote the dimension and number of iterations, respectively. Its per-iteration time complexity is $O ( d^3 )$, independent of the sample size. To the best of our knowledge, this is currently the computationally fastest stochastic first-order method for maximum-likelihood quantum state tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源