论文标题
Frobenius对2度的Del Pezzo表面的作用
Frobenius actions on Del Pezzo surfaces of degree 2
论文作者
论文摘要
我们确定了奇数特征有限特征的有限特征的DEL PEZZO表面的数量,并用Frobenius内态的指定作用,即我们解决了“定量逆Galois问题”。作为应用,我们确定了2度的DEL PEZZO表面的数量,并带有给定数量的点,并恢复Banwait-Fité-Loughran和Loughran-Trepalin的结果。
We determine the number of Del Pezzo surfaces of degree 2 over finite fields of odd characteristic with specified action of the Frobenius endomorphism, i.e. we solve the "quantitative inverse Galois problem". As applications we determine the number of Del Pezzo surfaces of degree 2 with a given number of points and recover results of Banwait-Fité-Loughran and Loughran-Trepalin.