论文标题

NAS-LID:具有局部固有维度的有效神经体系结构搜索

NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension

论文作者

He, Xin, Yao, Jiangchao, Wang, Yuxin, Tang, Zhenheng, Cheung, Ka Chu, See, Simon, Han, Bo, Chu, Xiaowen

论文摘要

单发神经架构搜索(NAS)通过训练一个超网估算每个可能的儿童体系结构的性能(即子网),从而大大提高了搜索效率。但是,子网中特征的不一致会严重干扰优化,导致子网的性能排名差。随后的探索通过特定标准(例如梯度匹配,减少干扰)分解超网的重量;然而,它们遭受了巨大的计算成本和低空间的可分离性。在这项工作中,我们提出了基于基于NAS-LID的轻巧有效的局部固有维度(LID)。 NAS-LID通过计算低成本盖子特征逐层的特征来评估体系结构的几何特性,并且与梯度相比,盖子的相似性具有更好的可分离性,从而有效地减少了子网中的干扰。在NASBENCH-2011上进行了广泛的实验表明,NAS-LID可以提高效率的卓越性能。具体而言,与梯度驱动的方法相比,NAS-LID在NASBENCH-2010上搜索时最多可节省86%的GPU内存开销。我们还证明了NAS-LID对近距离和OFA空间的有效性。源代码:https://github.com/marsggbo/nas-lid。

One-shot neural architecture search (NAS) substantially improves the search efficiency by training one supernet to estimate the performance of every possible child architecture (i.e., subnet). However, the inconsistency of characteristics among subnets incurs serious interference in the optimization, resulting in poor performance ranking correlation of subnets. Subsequent explorations decompose supernet weights via a particular criterion, e.g., gradient matching, to reduce the interference; yet they suffer from huge computational cost and low space separability. In this work, we propose a lightweight and effective local intrinsic dimension (LID)-based method NAS-LID. NAS-LID evaluates the geometrical properties of architectures by calculating the low-cost LID features layer-by-layer, and the similarity characterized by LID enjoys better separability compared with gradients, which thus effectively reduces the interference among subnets. Extensive experiments on NASBench-201 indicate that NAS-LID achieves superior performance with better efficiency. Specifically, compared to the gradient-driven method, NAS-LID can save up to 86% of GPU memory overhead when searching on NASBench-201. We also demonstrate the effectiveness of NAS-LID on ProxylessNAS and OFA spaces. Source code: https://github.com/marsggbo/NAS-LID.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源