论文标题
包含Bessel函数衍生物功能的几何特性
Geometric Properties of Functions Containing Derivatives of Bessel Functions
论文作者
论文摘要
在本文中,我们的目的是找到$γ$ $α$的$γ$ -Spirallike和convex $γ$ -Sspirallike的订单$α$的ppirallike,用于函数的三种不同类型的正常化$n_ν(z)= az^2j_v^az^2j_ν^{\ prime}(z)+bzj_ prime, $j_ν(z)$是第一种订单$ν的贝塞尔函数。创建表格,并通过图形验证图表$ a,$ $ b $和$ c $在获得的结果中进行特殊值。
In this paper our aim is to find the radii of $γ$-Spirallike of order $α$ and convex $γ$-Spirallike of order $α$ for three different kinds of normalizations of the function $N_ν(z)=az^2J_ν^{\prime\prime}(z)+bzJ_ν^{\prime}(z)+cJ_ν(z),$ where $J_ν(z)$ is the Bessel function of the first kind of order $ν.$ Moreover, the $\mathcal{S}^*\left(φ\right)-$radii and $\mathcal{C}\left(φ\right)-$radii of these normalized functions are investigated. The tables are created and visual verification with graphs are made by giving special values to the real numbers $a,$ $b$ and $c$ in the obtained results.