论文标题
在复杂的仿射歧管上,在Kähler势能中,大地测量学的凸状态保存
The Preservation of Convexity by Geodesics in the Space of Kähler Potentials on Complex Affine Manifolds
论文作者
论文摘要
在带有恒定系数的Kähler$ω_0$的紧凑型复杂仿射歧管上,我们引入了一个概念:$(s,ω_0)$ - 凸率,并表明$(s,ω_0)$ - 凸率由地理学在Kähler潜能空间中保留。这意味着,如果两个电势都严格$(s,ω_0)$ - 凸,则连接它们的测量线的指标是非分类的。
On a compact complex affine manifold with a constant coefficient Kähler metric $ω_0$, we introduce a concept: $(S,ω_0)$-convexity and show that $(S,ω_0)$-convexity is preserved by geodesics in the space of Kähler potentials. This implies that if two potentials are both strictly $(S,ω_0)$-convex, then the metrics along the geodesic connecting them are non-degenerate.