论文标题
非平衡共存和运动诱导的相分离的机械理论
Mechanical Theory of Nonequilibrium Coexistence and Motility-Induced Phase Separation
论文作者
论文摘要
在天然和合成系统中常规观察到非平衡相变。这些过渡的普遍性突出了相位共存的一般相处理论的显着理论,该理论广泛适用于非平衡和平衡系统。在这里,我们提出了一种一般的机械理论,用于相位分离,该理论植根于近半个世纪以前探讨的思想中,在研究不均匀流体的研究中。核心思想是,无论系统是否处于平衡状态,界面内的机械力都会独特地确定共存标准。我们通过将其应用于活性布朗颗粒来证明该理论的功能和实用性,预测了在两个和三个维度中运动性诱导的相位分离的定量相图。该公式还允许预测新颖的界面现象,例如在深入进入两相区域时增加的界面宽度,这是通过计算机模拟证实的独特的非平衡效应。这种机械观点提供的散装相行为和界面现象的自洽确定为通往非平衡期过渡的一般理论提供了一个具体的路径。
Nonequilibrium phase transitions are routinely observed in both natural and synthetic systems. The ubiquity of these transitions highlights the conspicuous absence of a general theory of phase coexistence that is broadly applicable to both nonequilibrium and equilibrium systems. Here, we present a general mechanical theory for phase separation rooted in ideas explored nearly a half-century ago in the study of inhomogeneous fluids. The core idea is that the mechanical forces within the interface separating two coexisting phases uniquely determine coexistence criteria, regardless of whether a system is in equilibrium or not. We demonstrate the power and utility of this theory by applying it to active Brownian particles, predicting a quantitative phase diagram for motility-induced phase separation in both two and three dimensions. This formulation additionally allows for the prediction of novel interfacial phenomena, such as an increasing interface width while moving deeper into the two-phase region, a uniquely nonequilibrium effect confirmed by computer simulations. The self-consistent determination of bulk phase behavior and interfacial phenomena offered by this mechanical perspective provide a concrete path forward towards a general theory for nonequilibrium phase transitions.